Bounds for the Torsion of Elliptic Curves over Extensions with Bounded Ramification
نویسنده
چکیده
Let K be a number field and let E/K be an elliptic curve. The Mordell-Weil Theorem states that E(K), the set of K-rational points on E, can be given the structure of a finitely generated abelian group. In this note we consider elliptic curves defined over the rationals Q and provide bounds for the size of E(K)Tors, where K is an algebraic Galois extension of Q. Theorem 1. Let E/Q be an elliptic curve, let SE,add be the set of primes of additive reduction of E/Q, and let N ≥ 2 be fixed. Let K be an algebraic Galois extension of Q (not necessarily finite) unramified at primes in SE,add such that the ramification index of any other prime p in K/Q is finite and bounded by N . Then E(K)Tors is finite and there is a computable bound B = B(E,N) for its size. Moreover, if E is semi-stable, then the bound B is independent of E.
منابع مشابه
Uniform Boundedness and Elliptic Curves with Potential Supersingular Reduction
Let d ≥ 1 be fixed. Let F be a number field of degree d, and let E/F be an elliptic curve. Let E(F )tors be the torsion subgroup of E(F ). In 1996, Merel proved the uniform boundedness conjecture, i.e., there is a constant B(d), which depends on d but not on the chosen field F or on the curve E/F , such that the size of E(F )tors is bounded by B(d). Moreover, Merel gave a bound (exponential in ...
متن کاملHodge Theory and the Mordell-weil Rank of Elliptic Curves over Extensions of Function Fields
We use Hodge theory to prove a new upper bound on the ranks of Mordell-Weil groups for elliptic curves over function fields after regular geometrically Galois extensions of the base field, improving on previous results of Silverman and Ellenberg, when the base field has characteristic zero and the supports of the conductor of the elliptic curve and of the ramification divisor of the extension a...
متن کاملA descent method for explicit computations on curves
It is shown that the knowledge of a surjective morphism $Xto Y$ of complex curves can be effectively used to make explicit calculations. The method is demonstrated by the calculation of $j(ntau)$ (for some small $n$) in terms of $j(tau)$ for the elliptic curve with period lattice $(1,tau)$, the period matrix for the Jacobian of a family of genus-$2$ curves complementing the classi...
متن کاملFormal Groups of Elliptic Curves with Potential Good Supersingular Reduction
Let L be a number field and let E/L be an elliptic curve with potential supersingular reduction at a prime ideal ℘ of L above a rational prime p. In this article we describe a formula for the slopes of the Newton polygon associated to the multiplication-by-p map in the formal group of E, that only depends on the congruence class of p mod 12, the ℘-adic valuation of the discriminant of a model f...
متن کاملTorsion Points on Elliptic Curves over Function Fields and a Theorem of Igusa
If F is a global function field of characteristic p > 3, we employ Tate’s theory of analytic uniformization to give an alternative proof of a theorem of Igusa describing the image of the natural Galois representation on torsion points of non-isotrivial elliptic curves defined over F . Along the way, using basic properties of Faltings heights of elliptic curves, we offer a detailed proof of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010